## Frontmatter | | | | --- | --- | | Authors | [[Burcu Küçükoğlu]], [[Bodo Rueckauer]], [[Nasir Ahmad]], [[Jaap de Ruyter van Steveninck]], [[Umut Güçlü]], [[Marcel van Gerven]] | | Date | 2022/11 | | Source | [[International Journal of Neural Systems]] | | URL | https://doi.org/10.1142/S0129065722500526 | | Citation | Küçükoğlu, B., Rueckauer, B., Ahmad, N., de Ruyter van Steveninck, J., Güçlü, U., & van Gerven, M. (2022). [[Optimization of neuroprosthetic vision via end-to-end deep reinforcement learning]]. _International Journal of Neural Systems_. [[URL](https://doi.org/10.1142/S0129065722500526)]. #Journal | ## Abstract Visual neuroprostheses are a promising approach to restore basic sight in visually impaired people. A major challenge is to condense the sensory information contained in a complex environment into meaningful stimulation patterns at low spatial and temporal resolution. Previous approaches considered task-agnostic feature extractors such as edge detectors or semantic segmentation, which are likely suboptimal for specific tasks in complex dynamic environments. As an alternative approach, we propose to optimize stimulation patterns by end-to-end training of a feature extractor using deep reinforcement learning agents in virtual environments. We present a task-oriented evaluation framework to compare different stimulus generation mechanisms, such as static edge-based and adaptive end-to-end approaches like the one introduced here. Our experiments in Atari games show that stimulation patterns obtained via task-dependent end-to-end optimized reinforcement learning result in equivalent or improved performance compared to fixed feature extractors on high difficulty levels. These findings signify the relevance of adaptive reinforcement learning for neuroprosthetic vision in complex environments. ## PDF ![[Optimization of neuroprosthetic vision via end-to-end deep reinforcement learning.pdf]]